Epidemiological investigation of a case of nosocomial Legionnaires' disease in Taiwan: implications for routine environmental surveillance

S.T. Chien^{1,4}, J.C. Hsueh¹, H.-H. Lin², H.-Y. Shih³, T.-M. Lee¹, R.-J. Ben¹, S.-T. Chou¹, C.-M. Fong⁴, Y. E. Lin³, L.-R. Tseng⁵ and C.-S. Chiang^{5,6}

 Kaohsiung Armed Forces General Hospital, 2) E-Da Hospital/I-Shou University, 3) National Kaohsiung Normal University, 4) National Sun Yat-Sen University, Kaohsiung, 5) Research and Diagnostic Centre, Centres for Disease Control, Taipei and 6) Centre of General Education, National Taipei College of Nursing, Taipei, Taiwan

Abstract

An epidemiological investigation with *Legionella* and molecular subtyping was conducted to determine the source of a case of nosocomial Legionnaires' disease (LD) who was hospitalized in three hospitals within a month. *Legionella pneumophila* serogroup 3, an uncommon serogroup for infection, was isolated from the patient's sputum. Environmental surveillance revealed *Legionella* colonization in all three hospitals; the patient isolate matched the isolate from the first hospital by molecular typing. Culturing the hospital water supply for *Legionella* is a pro-active strategy for detection of nosocomial LD even in hospitals experiencing no previous cases.

Keywords: Epidemiological investigation, hospital water supply, nosocomial legionellosis, PFGE, routine environmental cultures

Original Submission: 1 July 2008; Revised Submission: 14 November 2008; Accepted: 2 January 2009 Editor: S. Cutler Article published online: 15 July 2009

Clin Microbiol Infect 2010; 16: 761–763 10.1111/j.1469-0691.2009.02890.x

Corresponding author and reprint requests: Y. E. Lin, Centre for Environmental Laboratory Services, National Kaohsiung Normal University, 62 Shen-chong Rd, Yanchao, Kaohsiung, Taiwan 824 E-mail: easonlin@nknucc.nknu.edu.tw

Nosocomial Legionnaires' disease (LD) is rarely reported in Taiwan [1-4]. To our knowledge, Chen *et al.* [5] were

the first to discover that the hospital water supply was responsible for cases of nosocomial LD in a Taiwan hospital. Because of this experience, several hospitals initiated routine environmental surveillance of the water supply, and found *Legionella* colonization in their hospital water supplies [6]. In this study, we report an epidemiological investigation of a case of nosocomial LD in which the patient was hospitalized in three hospitals within a month. None of the three hospitals had ever experienced a known case of nosocomial LD. The DNA subtyping technique was used to determine the source of the infection.

Three hospitals were involved in this study. Hospital A was an 1100-bed teaching hospital. Hospital B was a 260-bed community hospital with a long-term-care facility. Hospital C was a 700-bed military hospital. Hospital environmental cultures were conducted by taking swab samples of faucet outlets (both hot and cold water). The environmental samples were processed as previously described [7]. The media plates were incubated at 37°C for 5 days. Colonies that grew after subculture on buffered charcoal yeast extract medium but not on a blood agar plate were tested with a latex test (Oxoid Ltd, Basingstoke, UK) and confirmed using a monoclonal direct fluorescent antibody for serogroup identification (m-Technologies, Inc., Alpharetta, GA, USA). The patient's sputum samples were processed as previously described [8]. The molecular subtyping of chromosomal DNA for pulsed-field gel electrophoresis (PFGE) was performed using a CHEF MAPPER system (Bio-Rad Laboratories, Richmond, CA, USA) [9], and criteria for interpretation of PFGE patterns were as previously published [10,11].

The patient was hospitalized at hospital A for I month, because of productive cough. The patient received no antimicrobial therapy and was later discharged without a definitive diagnosis. After staying home for 5 days, the patient was admitted to the long-term-care unit at hospital B. Four days later at hospital B, acute shortness of breath and fever ensued. The patient was transferred to the intensive-care unit at hospital C, where pneumonia was diagnosed on admission on the basis of chest radiography. Cefpirome was prescribed initially, but fever persisted for 3 days. On day 4 at hospital C, erythromycin, meropenem and ampicillin-sulbactam were administered. Given the negative test result for Legionella pneumophila serogroup I urinary antigen, LD was not considered initially. Thus, although the sputum specimen was taken on day I at hospital C, the sputum specimen was not processed for Legionella by the hospital microbiology laboratory.

The patient's sputum was processed for LD on day 14 during an ongoing *Legionella* pneumonia study, in which sputum specimens from all pneumonia patients were processed weekly for *Legionella*. *L. pneumophila* serogroup 3 was isolated

from the sputum culture on day 17. Moxifloxacin was immediately initiated on day 17 for 3 weeks, and the patient was discharged.

The water supply of the patient's home was negative for Legionella (0/4). All three hospital water supplies were positive for L. pneumophila; 60% (6/10) of distal sites were positive for L. pneumophila serogroups 1, 3 and 6 in hospital A. One site (1/2) was positive for L. pneumophila serogroup I in the patient's room in hospital B. Twenty-five per cent (5/25) of distal sites were positive for L. pneumophila serogroups I and 3 in hospital C. PFGE showed that the L pneumophila serogroup 3 from hospital A matched the patient's isolate (Fig. 1).

Physicians in Taiwan tend to overlook nosocomial LD, as it is rarely reported. In this study, the patient's sputum was tested for *Legionella* at hospital C because: (i) the hospital's environmental surveillance revealed that 27% of distal sites of hospital water supply were positive for *Legionella* [6]; and (ii) the hospital had an ongoing prospective study in which every patient with nosocomial pneumonia was screened for *Legionella*. Coincidently, water supplies in all three hospitals were positive for *Legionella*, and were thus potential sources of infection. Molecular subtyping established that hospital A was probably the source.

Our finding confirmed the hypothesis that cases of nosocomial LD can be found through pro-active culturing of the hospital water distribution system. In four studies conducted in the USA and Canada, all hospitals colonized with *Legionella*

FIG. I. The pulsed-field gel electrophoresis pattern showed that the *Legionella pneumophila* serogroup 3 of the patient matched the *L. pneumophila* serogroup 3 from hospital A, but not hospital C. ATCC, American Type Culture Collection.

reported nosocomial LD following subsequent clinical surveillance [12–16]. In a Spanish study of 12 hospitals, 92% of hospitals (11/12) found cases of nosocomial LD following prospective clinical surveillance [17]. Culturing of the hospital water supply for *Legionella* as a pro-active measure for prevention of nosocomial LD has been adopted in France, Denmark, Germany, The Netherlands, Spain, Italy, Norway, Portugal, and Switzerland [18].

Our experience with *L. pneumophila* serogroup 3 has relevance for a recent report. Leoni *et al.* [19] found no cases of nosocomial LD, despite the fact that 60% of the hospital water samples were positive for *L. pneumophila*. The investigators used *Legionella* urinary antigen as a screening test, and found no cases, and concluded that monitoring of hospital water is 'of little clinical significance'. However, we note that their water was colonized with *L. pneumophila* serogroup 3, which cannot be detected by urinary antigen test [20]. Had these investigators used culture, cases of LD might have been found as in our report.

In summary, environmental monitoring followed by clinical surveillance revealed a case of nosocomial LD due to a serogroup of *L. pneumophila* that is not commonly associated with infection. The infection had been acquired from hospital A, which had no previous knowledge or experience with LD. Advocates of a pro-active approach for prevention by using environmental cultures recommend that respiratory tract culture for *Legionella* should be adopted if the hospital water supply is colonized with *L. pneumophila* other than serogroup I.

Acknowledgements

We thank V. L. Yu for his critique of this manuscript. The findings in this manuscript were previously presented at the 23rd meeting of the European Working Group for *Legionella* Infections in Madrid, 11–13 May 2008.

Transparency Declaration

All authors report no conflicts of interest.

References

- Liu YC, Cheng DL, Shi FW, Huang WK, Wang JH. Legionnaires' disease—a case report. *Taiwan Yi Xue Hui Za Zhi* 1985; 84: 1180–1185.
- Wang LS, Chin TD, Liu C. Nosocomial legionnaires' disease. Zhonghua Yi Xue Za Zhi (Taipei) 1989; 44: 242–248.

- Pan TM, Yea HL, Huang HC, Lee CL, Horng CB. Legionella pneumophila infection in Taiwan: a preliminary report. J Formos Med Assoc 1996; 95: 536–539.
- Chang FY. Multilobar consolidation with abscess formation caused by Legionella pneumophila: an unusual chest radiographic presentation. J Microbiol Immunol Infect 1998; 31: 200–202.
- Chen YS, Liu YC, Lee SS et al. Abbreviated duration of superheatand-flush and disinfection of taps for Legionella disinfection: lessons learned from failure. Am J Infect Control 2005; 33: 606–610.
- Yu PY, Lin YE, Lin WR et al.. The high prevalence of Legionella pneumophila contamination in hospital potable water systems in Taiwan: implications for hospital infection control in Asia. Int J Infect Dis 2008; 12: 416–420.
- Ta AC, Stout JE, Yu VL, Wagener MM. Comparison of culture methods for monitoring Legionella species in hospital potable water systems and recommendations for standardization of such methods. *J Clin Microbiol* 1995; 33: 2118–2123.
- Lin A, Stout JE, Rihs JD, Vickers RM, Yu VL. Improved Legionella selective media by the addition of fluconazole: results of in vitro testing and clinical evaluation. *Diagn Microbiol Infect Dis* 1999; 34: 173–175.
- Drenning SD, Stout JE, Joly JR, Yu VL. Unexpected similarity of pulsedfield gel electrophoresis patterns of unrelated clinical isolates of Legionella pneumophila, serogroup 1. J Infect Dis 2001; 183: 628–632.
- Tenover FC, Arbeit RD, Goering RV et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995; 33: 2233–2239.
- 11. Hunter SB, Vauterin P, Lambert-Fair MA et al. Establishment of a universal size standard strain for use with the pulsenet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol 2005; 43: 1045–1050.
- Muder RR, Yu VL, McClure JK, Kroboth FJ, Kominos SD, Lumish RM. Nosocomial legionnaires' disease uncovered in a prospective pneumonia study. JAMA 1983; 249: 3184–3188.
- Yu VL, Beam TR Jr, Lumish RM et al. Routine culturing for Legionella in the hospital environment may be a good idea: a three-hospital prospective study. Am J Med Sci 1987; 294: 97–99.
- 14. Johnson JT, Yu VL, Best MG et al. Nosocomial legionellosis in surgical patients with head-and-neck cancer: implications for epidemiological reservoir and mode of transmission. *Lancet* 1985; 2: 298–300.
- Goetz AM, Stout JE, Jacobs SL et al. Nosocomial legionnaires' disease discovered in community hospitals following cultures of the water system: seek and ye shall find. Am J Infect Control 1998; 26: 8–11.
- Joly J, Alary M. Occurrence of nosocomial legionnaires' disease in hospitals with contaminated potable water supply. In: Barbaree JD, Breiman RF, Dufour AP, eds. Legionella: current status and emerging perspectives. Washington, DC: American Society for Microbiology, 1994; 39.
- Sabria M, Modol JM, Garcia-Nunez M et al. Environmental cultures and hospital-acquired legionnaires' disease: a 5-year prospective study in 20 hospitals in Catalonia, Spain. Infect Control Hosp Epidemiol 2004; 25: 1072–1076.
- 18. The European Surveillance Scheme for Travel Associated Legionnaires' Disease and the European Working Group for Legionella Infections. References for national guidelines for control and prevention of Legionnaires' disease. In: EWGLI: The European guidelines for control and prevention of travel associated Legionnaires' disease: 2005; Supplement I, Part C. London: The European Working Group for Legionella Infections, 79–81, 2005.
- Leoni E, Sacchetti R, Aporti M et al. Active surveillance of legionnaires disease during a prospective observational study of community- and hospital-acquired pneumonia. Infect Control Hosp Epidemiol 2007; 28: 1085–1088.
- 20. Stout JE, Yu VL. Legionellosis. N Engl J Med 1997; 337: 682-687.

First isolation of Legionella species, including L. pneumophila serogroup 1, in Greek potting soils: possible importance for public health

E. N. Velonakis¹, I. M. Kiousi², C. Koutis²,

E. Papadogiannakis¹, F. Babatsikou² and A. Vatopoulos¹ 1) Department of Microbiology, National School of Public Health and

Central Public Health Laboratory, Athens/Hellenic Centre for Infectious Disease Control (KEELPNO), Ministry of Health and 2) Department of Public Health, Laboratory of Epidemiology, Technological Educational Institute of Athens, Athens, Greece

Abstract

A total of 21 Legionella isolates were recovered from six out of 22 samples of potting soil from the Athens area, Greece. Legionella pneumophila (serogroups I and 2–15) and species and serotypes included in the group of L. longbeachae serogroups I and 2, L bozemanii serogroups I and 2, L dumoffii, L gormanii, L jordanis, L micdadei and L anisa were isolated on BCYE α agar containing cysteine, GVPC and natamycin and on BCYE α agar containing cysteine, Wadowsky Yee supplement and natamycin. The bacterial load was 4000–120 000 CFU/g of potting soil. The isolation of L pneumophila serogroup I from Greek potting soils is reported here for the first time.

Keywords: Environmental exposure, *Legionella pneumophila* serogroup I, Legionnaires' disease, public health, soil

Original Submission: 18 March 2009; Revised Submission: 28 May 2009; Accepted: 3 June 2009 Editor: D. Raoult Article published online: 11 September 2009

Clin Microbiol Infect 2010; 16: 763–766 10.1111/j.1469-0691.2009.02957.x

Corresponding author and reprint requests: E. N. Velonakis, Department of Microbiology, National School of Public Health, 196 Alexandras Avenue, Athens 115 21, Greece E-mail: mvelonak@nsph.gr